Complete Guide to Machining Blueprint Symbols

nominal size dimension with a tolerance

Nominal Size

In the example shown, 24 is the nominal size. It is the size that the tolerance envelope is based on. A reference/starting point.

plus or minus symbol

Plus or Minus

Plus or minus is the most common tolerance type. They are less common, but tolerances can be all negative, all positive or +/- with enequal sizes such as +3/-2.

45 degrees

Degree Symbol

The symbol used to callout angle requirements.

Reference dimensions are shown in parentheses. They are provided for informational use only. They are not size requirements but often help make the print easier to understand.

Symbols For Features

Radius Blueprint GD&T Symbol r

Radii

Half of a circle. The distance from the center of a circle to the edge.

Diameter Blueprint GD&T Symbol o with line through it

Diameters

The distance all the way across a circle. Two times the radius. This symbol gets used with other symbols as well such as counterbores, countersinks, and true position callouts.

Depth Blueprint GD&T Symbol line with arrow pointing down

Depth of

This symbol specifies the depth of a feature.

A counterbore is a flat bottomed, recessed hole.

Countersinks are a round, angled feature added to a hole. They are often used to allow a screw head or other fastener to sit flush with the surface.

A spotface is  a shallow counterbore that allows a fastener to sit straight. The symbol has a few variations that get used. Often the counterbore symbol portion is left out and the SF is used only.

Surface Finish Blueprint GD&T Symbol check mark

Surface Texture

A symbol for defining the surface finish of a part. There are many variations of the surface texture symbol but most often it is used with a microinch or micrometer value callout that specifies the roughness of a surface.

Symbols Used In GD&T Callouts

Basic dimensions represent a  theoretically perfect feature or size. They are shown enclosed in a box and are the basis for many GD&T callouts.

Datums are features that are used to locate a part for measurement. 

Feature control frames contain a geometric dimensioning and tolerance callout.

The example shown reads, the feature is perpendicular to within 0.001 to datum A.

GD&T Symbols

Symbols For Roundness

Circularity Blueprint GD&T Symbol circle

Circularity

Otherwise known as roundness. Circularity only applies at one location. You might check the roundness of a hole at a specific depth.

Cylindricity Blueprint GD&T Symbol circle with two lines coming off it

Cylindricity

Cylindricity is roundness but over all locations of a feature. Cylindricity of a hole would mean the hole must be round at all points.

Symbols Used for Flat Things

Straightness Blueprint GD&T Symbol line

Straightness

A straightforward requirement. The feature must be a straight line within the specified tolerance.

Flatness Blueprint GD&T Symbol parallelogram

Flatness

Similar to straightness but over a whole surface. The high and low of a surface must be within the specified tolerance of each other.

Symbols Used to Control Angles

Perpendicularity Blueprint GD&T Symbol two lines perpendicular to each other

Perpendicularity

Two features must be 90 degrees to each other.

Parallelism Blueprint GD&T Symbol two parallel lines

Parallelism

Two features must run together (180 degrees to each other).

Angularity Blueprint GD&T Symbol two lines at an angle

Angularity

Angularity is used when two features must be have a specific angle between them and the angle between the features is not 90 or 180 degrees.

Symbols Used for Profile

Profile of a Line Blueprint GD&T Symbol half circle not connected

Profile of a Line

Profile of a line controls the shape of a feature. Imagine it as controlling the outline of a feature.

Profile of a Surface Blueprint GD&T Symbol half circle

Profile of a Surface

Profile of a surface controls the shape of a feature but instead of controlling it in one location like profile of a line, it applies to the entire feature surface.

GD&T Symbols That Control Location of a Feature

True Position Blueprint GD&T Symbol target

True Position

Controls location of a feature based on the variation from the basic dimensions.

Concentricity Blueprint GD&T Symbol two concentric circles

Concentricity

A requirement that the centerline or axis of two features are located together. 

Symmetry Blueprint GD&T Symbol three lines

Symmetry

A requirement that a feature must be evenly located based on another feature. Centered based on a feature or location.

Runout Blueprint GD&T Symbol single arrow

Circular Runout

Controls how even a surface is when spun in a circle. 

Total Runout Blueprint GD&T Symbol two arrows

Total Runout

The same as circular runout but at all locations on the feature. Circular runout and total runout have a relationship similar to circularity and cylindricity.

Symbols That Change Tolerance

Maximum Material Condition Blueprint GD&T Symbol m in a circle

Maximum Material Condition

A modifier that can give bonus tolerance based how close or far the features are from nominal size.

Least Material Condition Blueprint GD&T Symbol l in a circle

Least Material Condition

A modifier that can give bonus tolerance based how close or far the features are from nominal size.

Projected Tolerance Zone Blueprint GD&T Symbol p in a circle

Projected Tolerance Zone

Used when a tolerance zone applies outside the boundaries of the physical part.

Regardless of Feature Size Blueprint GD&T Symbol s in a circle

Regardless of Feature Size

The tolerances do not change based on the size of the features. This is the default spec and any tolerance is assumed to be regardless of feature size even if the symbol is not used.

Unequally Disposed Profile Blueprint GD&T Symbol U in a circle

Unequally Disposed Tolerance Zone

Profile tolerance zones are normally centered on the nominal dimensions. When this is not the case, the unequally disposed tolerance symbol is used to move the tolerance zone based off the nominal dimensions.

Want to learn more?

GD&T is a complicated subject and understanding it correctly can be the difference between a perfect part and scrap.

The best way to learn GD&T is from experienced teachers who can break down the material into manageable pieces.

Luckily, we know someone.

And MachinistGuides.com readers get an exclusive discount on training!

Leave a Comment